809 research outputs found

    Insights on the physics of SNIa obtained from their gamma-ray emission

    Full text link
    Type Ia supernovae are thought to be the outcome of the thermonuclear explosion of a carbon/oxygen white dwarf in a close binary system. Their optical light curve is powered by thermalized gamma-rays produced by the radioactive decay of 56^{56}Ni, the most abundant isotope present in the debris. Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the structure of the exploding star and the characteristics of the explosion. The fluxes of the 56^{56}Ni lines and the continuum obtained by INTEGRAL from SN2014J in M82, the first ever gamma-detected SNIa, around the time of the maximum of the optical light curve strongly suggest the presence of a plume of 56^{56}Ni in the outermost layers moving at high velocities. If this interpretation was correct, it could have important consequences on our current understanding of the physics of the explosion and on the nature of the systems that explode.Comment: Proceedings of the 11th INTEGRAL Conference Gamma-Ray AStrophysics in Multi-Wavelength Perspectiv

    Axions and the pulsation periods of variable white dwarfs revisited

    Get PDF
    Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity function of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the luminosity function of white dwarfs, in contrast with previous estimations. Furthermore, it is shown that if such axions indeed exist, the drift of the periods of pulsation of DBV stars would be noticeably perturbed.Comment: Accepted for publication in Astronomy & Astrophysic

    White dwarf cooling sequences and cosmochronology

    Full text link
    The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quality of the theoretical models of evolution of white dwarfs allow to feed the hope that in a near future it will be possible to reconstruct the history of the different Galactic populations.Comment: Proceedings of the 40th Liege International Astrophysical Colloquium: Aging low mass stars: from red giants to white dwarf

    Gravitational settling of 22Ne and white dwarf evolution

    Get PDF
    We study the effects of the sedimentation of the trace element 22Ne in the cooling of white dwarfs. In contrast with previous studies, which adopted a simplified treatment of the effects of 22Ne sedimentation, this is done self-consistently for the first time, using an up-to-date stellar evolutionary code in which the diffusion equation is coupled with the full set of equations of stellar evolution. Due the large neutron excess of 22Ne, this isotope rapidly sediments in the interior of the white dwarf. Although we explore a wide range of parameters, we find that using the most reasonable assumptions concerning the diffusion coefficient and the physical state of the white dwarf interior the delay introduced by the ensuing chemical differentation is minor for a typical 0.6 Msun white dwarf. For more massive white dwarfs, say M_Wd about 1.0 Msun, the delay turns out to be considerably larger. These results are in qualitatively good accord with those obtained in previous studies, but we find that the magnitude of the delay introduced by 22Ne sedimentation was underestimated by a factor of about 2. We also perform a preliminary study of the impact of 22Ne sedimentation on the white dwarf luminosity function. Finally, we hypothesize as well on the possibility of detecting the sedimentation of 22Ne using pulsating white dwarfs in the appropriate effective temperature range with accurately determined rates of change of the observed periods.Comment: To apper in The Astrophysical Journa

    Gamma-ray emission from novae related to positron annihilation: constraints on its observability posed by new experimental nuclear data

    Get PDF
    Classical novae emit gamma-ray radiation at 511 keV and below, with a cut-off at around (20-30) keV, related to positron annihilation and its Comptonization in the expanding envelope. This emission has been elusive up to now, because it occurs at epochs well before the maximum in optical luminosity, but it could be detected by some sensitive intrument on board a satellite, provided that the nova is close enough and that it is observed at the right moment. The detection of this emission, which is a challenge for the now available and for the future gamma-ray instruments, would shed light into the physical processes occurring in the early phases of the explosion, which are invisible in other lower energy ranges. A good prediction of the emitted fluxes and of the corresponding detectability distances with different instruments relies critically on a good knowledge of reaction rates relevant to f18 destruction, which have been subject to a strong revision after recent nuclear spectroscopy measurements. With respect to previous results, smaller ejected masses of f18 are predicted, leading to smaller emitted fluxes in the (20-511) keV range and shorter detectability distances.Comment: 9 pages, 2 figures, accepted for publication in Astrophys. J. Letter

    Monte Carlo simulations of the halo white dwarf population

    Full text link
    The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. Whereas white dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy, there are as well several constraints on the role played by white dwarfs. In this paper we analyze self-consistently and simultaneously four different results, namely, the local halo white dwarf luminosity function, the microlensing results reported by the MACHO team towards the LMC, the results of Hubble Deep Field (HDF) and the results of the EROS experiment, for several initial mass functions and halo ages. We find that the proposed log-normal initial mass functions do not contribute to solve the problem posed by the observed microlensing events and, moreover, they overproduce white dwarfs when compared to the results of the HDF and of the EROS survey. We also find that the contribution of hydrogen-rich white dwarfs to the dynamical mass of the halo of the Galaxy cannot be more than 4\sim 4%.Comment: 17 pages, 10 figures; accepted for publication in Astronomy and Astrophysic

    Gamma-ray emission of classical novae and its detectability by INTEGRAL

    Get PDF
    A lot of information concerning the mechanism of nova explosions will be extracted from the possible future observations with INTEGRAL. In order to be prepared for this task, we are performing detailed models of the gamma-ray emission of classical novae, for a wide range of possible initial conditions. Spectra at different epochs after the explosion and light curves for the different lines (511, 478 and 1275 keV) and the continuum are presented, as well as the detectability distances with INTEGRAL spectrometer SPI. New results related to 18F synthesis related to very recent data of nuclear physics are advanced as preliminary.Comment: 4 pages, 2 figures, to appear in "3rd INTEGRAL Workshop: The Extreme Universe", Taormina (Italy
    corecore